login
A356786
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(x * A(x)^2).
6
1, 0, 2, 3, 92, 510, 15114, 174300, 5558944, 103712616, 3672530280, 96397602840, 3830335035240, 129817630491120, 5796134828193696, 239906921239210680, 11996259216566469120, 584024600798956215360, 32523678395272329425856
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} (n+k+1)^(k-1) * |Stirling1(n-k,k)|/(n-k)!.
PROG
(PARI) a(n) = n!*sum(k=0, n\2, (n+k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 27 2022
STATUS
approved