login
A356011
a(n) = n! * Sum_{k=1..n} 1/(k! * floor(n/k)).
2
1, 2, 6, 17, 80, 337, 2240, 14681, 117010, 1023941, 10900472, 108881665, 1375544846, 17732140805, 247041590476, 3605768497217, 59990390084690, 977383707751621, 18214603019184800, 337615168055209601, 6763842079452393622, 141262515443311046885
OFFSET
1,2
FORMULA
E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k)/k!.
PROG
(PARI) a(n) = n!*sum(k=1, n, 1/(k!*(n\k)));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k)/k!)/(1-x)))
CROSSREFS
Row sums of A356013.
Sequence in context: A253882 A327698 A183757 * A181490 A340210 A165325
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 23 2022
STATUS
approved