login
A356015
a(n) = n! * Sum_{k=1..n} 1/(k * floor(n/k)!).
1
1, 2, 6, 21, 125, 625, 5089, 38185, 343657, 3376081, 40765681, 427649761, 6038448481, 84486386881, 1252766088001, 19388604009601, 350529058051201, 5938944734419201, 119242323659692801, 2303746722596390401, 48358406991122726401, 1063884813011759692801
OFFSET
1,2
FORMULA
E.g.f.: (1/(1-x)) * Sum_{k>0} (1 - x^k) * (exp(x^k) - 1)/k.
PROG
(PARI) a(n) = n!*sum(k=1, n, 1/(k*(n\k)!));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (1-x^k)*(exp(x^k)-1)/k)/(1-x)))
CROSSREFS
Sequence in context: A126060 A266934 A182157 * A110306 A351691 A028936
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 23 2022
STATUS
approved