OFFSET
1,3
COMMENTS
The value of the integral given in the Formula section. It was discussed by Niels Bohr in a letter to his brother, Harald (June 12, 1912).
REFERENCES
Niels Bohr, Collected Works, Vol. I, L. Rosenfeld, ed., North-Holland, Amsterdam, 1972, pp. 554-557.
Murray S. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, Philadelphia, 1987, pp. 252-253.
LINKS
P. J. Schweitzer, Problem 77-3, A Definite Integral of N. Bohr, SIAM Review, Vol. 19, No. 1 (1977), p. 147; Solution by D. E. Amos, ibid., Vol. 20, No. 1 (1978), pp. 188-190.
FORMULA
Equals Integral_{x=-oo..oo} F(x)*(F'(x)-log(x)) dx, where F(x) = Integral_{y=-oo..oo} cos(x*y)/(1+y^2)^(3/2) dy.
EXAMPLE
-1.15063007089458760834881995377084891775092151763321...
MATHEMATICA
RealDigits[-2 - (1 - EulerGamma - Log[2]) * Pi, 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jun 03 2022
STATUS
approved