login
A197508
Decimal expansion of least x > 0 having cos(2*x) = cos(3*Pi*x/2)^2.
2
5, 0, 6, 2, 9, 7, 8, 9, 9, 2, 3, 4, 0, 5, 9, 8, 2, 6, 7, 5, 0, 0, 1, 1, 5, 6, 2, 7, 8, 3, 6, 9, 7, 0, 3, 2, 5, 2, 8, 6, 5, 8, 1, 6, 3, 9, 5, 8, 2, 8, 9, 4, 7, 4, 1, 9, 1, 4, 3, 2, 4, 7, 4, 1, 1, 1, 0, 7, 6, 9, 2, 2, 7, 8, 9, 7, 5, 3, 6, 7, 6, 3, 4, 2, 8, 4, 5
OFFSET
0,1
COMMENTS
The Mathematica program includes a graph. See A197476 for a guide for the least x > 0 satisfying cos(b*x) = cos(c*x)^2 for selected b and c.
EXAMPLE
x=0.50629789923405982675001156278369703252865816395828...
MATHEMATICA
b = 2; c = 3 Pi/2; f[x_] := Cos[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .5, .51}, WorkingPrecision -> 110]
RealDigits[t] (* A197508 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi/6}]
CROSSREFS
Cf. A197476.
Sequence in context: A197029 A197030 A035550 * A354683 A159751 A190914
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 15 2011
EXTENSIONS
a(87) onward corrected by Sean A. Irvine, Sep 08 2021
STATUS
approved