login
A353801
a(n) = A049559(n) / A187730(n), where A049559(n) and A187730(n) are the greatest common divisors between Euler phi(n) and n-1, and between Carmichael lambda(n) and n-1, respectively.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,21
LINKS
MATHEMATICA
a[n_] := GCD[n - 1, EulerPhi[n]] / GCD[n - 1, CarmichaelLambda[n]]; Array[a, 100] (* Amiram Eldar, May 13 2022 *)
PROG
(PARI)
A049559(n) = gcd(n-1, eulerphi(n));
A187730(n) = gcd(lcm(znstar(n)[2]), n-1); \\ From A187730
A353801(n) = (A049559(n) / A187730(n));
CROSSREFS
Cf. A280262 (positions of terms > 1).
Cf. also A034380.
Sequence in context: A287656 A043286 A172098 * A333254 A204162 A266227
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 13 2022
STATUS
approved