OFFSET
1,2
COMMENTS
From Jon E. Schoenfield, Jun 14 2024: (Start)
For integers k, neither 3 nor 4 ever divides k^2 + 1, so there exists no prime p < 5 such that p^2 divides k^2 + 1.
For n <= 32, the only n for which the 5-adic valuation of a(n)^2 + 1 is not gpf(n) - 1 is n = 16 (see Examples).
Conjecture: a(n) is never -1. (End)
EXAMPLE
From Jon E. Schoenfield, Jun 14 2024: (Start)
From a(5) = 182 because 182 is the smallest positive integer k such that k^2 + 1 has 2*5 divisors: 182^2 + 1 = 33125 = 5^4 * 53.
a(16) = 307 because 307 is the smallest positive integer k such that k^2 + 1 has 2*16 divisors: 307^2 + 1 = 94250 = 2 * 5^3 * 377.
a(31) = 2444574943897581751068: 2444574943897581751068^2 + 1 = 5975946656331864965715445578098297119140625 = 5^30 * 6416623862896477837609. (End)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, May 15 2022
EXTENSIONS
a(26), a(29), and a(31) corrected by Jon E. Schoenfield, Jun 14 2024
STATUS
approved