login
A351804
a(n) = [x^n] 1/Product_{j=1..n} (1 - j^n*x).
2
1, 1, 21, 28800, 6702928485, 485036145970949475, 17284020213927891173772415260, 439885788765576174397949231373608504971360, 10926401685584312222862714944076761452123218197332439365413, 346792877099311752547903589477147000220953930332269111366383185472249165168535
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{p in {1..n}^n : p_i <= p_{i+1}} Product_{j=1..n} p_j^n.
EXAMPLE
a(2) = (1*1)^2 + (1*2)^2 + (2*2)^2 = 1 + 4 + 16 = 21.
MAPLE
b:= proc(n, k, p) option remember; `if`(k=0, 1,
add(b(j, k-1, p)*j^p, j=1..n))
end:
a:= n-> b(n$3):
seq(a(n), n=0..9);
CROSSREFS
Sequence in context: A250066 A299035 A189648 * A283841 A100414 A189310
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 19 2022
STATUS
approved