OFFSET
1,1
COMMENTS
Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a "Torricelli triangle".
For the corresponding primitive triples, miscellaneous properties and references, see A336328.
Equivalently, a(n) is the numerator of the fraction FB = a(n) / A351477(n).
Also, if F is the Fermat point of a triangle ABC with A < B < C < 2*Pi/3, where AB, BC, CA, FA, FB and FC are all positive integers, then, when FA + FB + FC = d = A351476(n), we have FB = a(n).
FB is the middle length with FC < FB < FA (remember a < b < c).
LINKS
FORMULA
FB = sqrt(((2*a*c)^2 - (a^2+c^2-d^2)^2)/3) / d. - Jinyuan Wang, Feb 19 2022
EXAMPLE
PROG
(PARI) lista(nn) = {my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(d=6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4)) && issquare(d=(a^2+b^2+c^2+sqrtint(d))/2), d = sqrtint(d); print1(numerator(sqrtint(((2*a*c)^2 - (a^2+c^2-d^2)^2)/3)/d), ", "); ); ); ); ); } \\ Michel Marcus, Mar 01 2022
CROSSREFS
Cf. A336328 (primitive triples), A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter), A351801 (FA numerator), this sequence (FB numerator), A351803 (FC numerator), A351477 (common denominator of FA, FB, FC), A351476 (other 'FA + FB + FC').
KEYWORD
nonn
AUTHOR
Bernard Schott, Feb 19 2022
EXTENSIONS
More terms from Jinyuan Wang, Feb 19 2022
STATUS
approved