login
A350920
a(0) = 5, a(1) = 5, and a(n) = 4*a(n-1) - a(n-2) - 4 for n >= 2.
9
5, 5, 11, 35, 125, 461, 1715, 6395, 23861, 89045, 332315, 1240211, 4628525, 17273885, 64467011, 240594155, 897909605, 3351044261, 12506267435, 46674025475, 174189834461, 650085312365, 2426151414995, 9054520347611, 33791929975445, 126113199554165, 470660868241211, 1756530273410675, 6555460225401485, 24465310628195261, 91305782287379555
OFFSET
0,1
COMMENTS
One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
FORMULA
a(n) = 3*A001835(n) + 2. - Hugo Pfoertner, Jan 22 2022
G.f.: (5 - 20*x + 11*x^2)/((1 - x)*(1 - 4*x + x^2)). - Stefano Spezia, Jan 22 2022
CROSSREFS
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350921, A350922, A350923, A350924, A350925, A350926.
Sequence in context: A214827 A298955 A299591 * A173316 A242325 A098331
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Jan 22 2022
STATUS
approved