login
A350926
a(0) = 1, a(1) = 17, and a(n) = 23*a(n-1) - a(n-2) - 4 for n >= 2.
9
1, 17, 386, 8857, 203321, 4667522, 107149681, 2459775137, 56467678466, 1296296829577, 29758359401801, 683145969411842, 15682598937070561, 360016629583211057, 8264699881476783746, 189728080644382815097, 4355481154939327963481, 99986338482960160344962, 2295330303953144359970641
OFFSET
0,2
COMMENTS
One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
FORMULA
G.f.: (1 - 7*x + 2*x^2)/((1 - x)*(1 - 23*x + x^2)). - Stefano Spezia, Jan 22 2022
21*a(n) = 4+17*A097778(n)-38*A097778(n-1). - R. J. Mathar, Feb 07 2022
MATHEMATICA
LinearRecurrence[{24, -24, 1}, {1, 17, 386}, 20] (* Harvey P. Dale, Jun 12 2022 *)
CROSSREFS
Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350925.
Sequence in context: A159244 A318043 A012639 * A327732 A012200 A340972
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Jan 22 2022
STATUS
approved