login
A350869
a(n) = Sum_{i=0..10^n-1} i^3.
3
0, 2025, 24502500, 249500250000, 2499500025000000, 24999500002500000000, 249999500000250000000000, 2499999500000025000000000000, 24999999500000002500000000000000, 249999999500000000250000000000000000, 2499999999500000000025000000000000000000
OFFSET
0,2
COMMENTS
These terms k = x.y satisfy equation x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0. So, this is a subsequence of A350870 and A238237.
FORMULA
a(n) = 10^(2n) * (10^n-1)^2 / 4 = A037182(n)^2.
a(n) = A000217(10^n-1)^2.
a(n) = A038544(n) - 10^(3*n).
EXAMPLE
a(1) = Sum_{i=0..9} i^3 = (Sum_{i=0..9} i)^2 = 2025.
MATHEMATICA
a[n_] := (10^n*(10^n - 1)/2)^2; Array[a, 11, 0] (* Amiram Eldar, Jan 20 2022 *)
PROG
(PARI) a(n) = my(x=10^n-1); (x*(x+1)/2)^2; \\ Michel Marcus, Jan 22 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Bernard Schott, Jan 20 2022
STATUS
approved