login
A349986
Numbers that can be represented as p^2 + p*q + q^2 where p and q are primes.
2
12, 19, 27, 39, 49, 67, 75, 79, 109, 147, 163, 199, 201, 217, 247, 259, 309, 327, 349, 363, 399, 403, 427, 433, 457, 481, 507, 543, 579, 597, 607, 669, 679, 691, 739, 777, 867, 903, 937, 973, 997, 1011, 1027, 1063, 1083, 1093, 1141, 1209, 1227, 1281, 1327, 1387, 1423, 1447, 1489, 1533, 1579, 1587
OFFSET
1,1
COMMENTS
The only square in this sequence is 49.
EXAMPLE
a(3) = 27 is a term because 27 = 3^2+3*3+3^2.
a(4) = 39 is a term because 39 = 2^2+2*5+5^2.
MAPLE
N:= 10^4: # for terms <= N
P:= select(isprime, [2, seq(i, i=3..floor(sqrt(N)), 2)]):
nP:= nops(P):
S:= {}:
for i from 1 to nP do
for j from 1 to i do
x:= P[i]^2 + P[i]*P[j]+P[j]^2;
if x > N then break fi;
S:= S union {x};
od od:
sort(convert(S, list));
CROSSREFS
Contains A079705, A244146, A349987.
Subsequence of A024614.
Sequence in context: A030609 A053752 A291939 * A043102 A039279 A045067
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 09 2022
STATUS
approved