OFFSET
1,1
COMMENTS
Equally: primes that are of the form (p+q)^2 - p*q, with p, q primes. - Antti Karttunen, Jun 21 2014
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..2089
EXAMPLE
The terms 19, 67, 79 and 1777753 are in the sequence because they can be represented as:
19 = 2^2 + 2*3 + 3^2 = (2+3)^2 - 2*3.
67 = 2^2 + 2*7 + 7^2 = (2+7)^2 - 2*7.
79 = 3^2 + 3*7 + 7^2 = (3+7)^2 - 3*7.
1777753 = 677^2 + 677*859 + 859^2 = (677+859)^2 - 677*859.
MATHEMATICA
Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[Reduce[p == x^2 + x y + y^2, {x, y}, Primes] =!= False, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jul 12 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 21 2014
STATUS
approved