login
A349137
a(n) = phi(A003602(n)), where A003602 is Kimberling's paraphrases, and phi is Euler totient function.
3
1, 1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 6, 2, 4, 1, 6, 4, 4, 2, 10, 2, 4, 1, 12, 6, 6, 2, 8, 4, 8, 1, 16, 6, 6, 4, 18, 4, 8, 2, 12, 10, 10, 2, 22, 4, 8, 1, 20, 12, 12, 6, 18, 6, 12, 2, 28, 8, 8, 4, 30, 8, 16, 1, 20, 16, 16, 6, 24, 6, 12, 4, 36, 18, 18, 4, 24, 8, 16, 2, 40, 12, 12, 10, 42, 10, 20, 2, 24, 22, 22, 4, 46
OFFSET
1,5
LINKS
FORMULA
a(n) = A000010(A003602(n)).
For all n >= 1, a(n) = a(2*n) = a(A000265(n)), a(2n-1) = A000010(n).
PROG
(PARI)
A003602(n) = (1+(n>>valuation(n, 2)))/2;
A349137(n) = eulerphi(A003602(n));
CROSSREFS
Cf. A000010, A000265, A003602, A349138 (inverse Möbius transform).
Cf. also A349136.
Sequence in context: A166974 A292504 A281118 * A284289 A111588 A070972
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 13 2021
STATUS
approved