login
A348750
a(n) = A064989(A064989(sigma(A003961(A003961(n))))), where A003961 shifts the prime factorization of n one step towards larger primes, and A064989 shifts it back towards smaller primes.
11
1, 1, 1, 23, 1, 1, 3, 7, 13, 1, 1, 23, 2, 3, 1, 305, 1, 13, 2, 23, 3, 1, 1, 7, 39, 2, 4, 69, 13, 1, 3, 69, 1, 1, 3, 299, 5, 2, 2, 7, 1, 3, 1, 23, 13, 1, 2, 305, 53, 39, 1, 46, 23, 4, 1, 21, 2, 13, 11, 23, 1, 3, 39, 19501, 2, 1, 29, 23, 1, 3, 2, 91, 3, 5, 39, 46, 3, 2, 2, 305, 2791, 1, 9, 69, 1, 1, 13, 7, 11, 13, 6
OFFSET
1,4
FORMULA
a(n) = A064989(A326042(A003961(n))).
Multiplicative with a(p^e) = A064989(A064989((q^(e+1)-1)/(q-1))), where q = nextPrime(nextPrime(p)).
PROG
(PARI)
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
CROSSREFS
Cf. A000203, A003961, A003973, A064989, A326042, A348751 (a(n) < n), A348752 (a(n) > n).
Sequence in context: A222032 A040532 A040531 * A040530 A040529 A234788
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 02 2021
STATUS
approved