login
A347495
Factorial base Niven numbers (A118363) with a record gap to the next factorial base Niven number.
3
1, 2, 9, 12, 30, 40, 60, 192, 224, 318, 550, 640, 1136, 1989, 4875, 4980, 23355, 24272, 24378, 40131, 60192, 63872, 80472, 238680, 280140, 2027340, 2872620, 3622068, 13400475, 21293094, 25399080, 28584626, 111020840, 278690360, 355419734, 398884590, 834592590
OFFSET
1,2
COMMENTS
The corresponding gaps are 1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 20, 32, 34, 39, 52, 55, 60, 67, 82, 85, 90, 96, 154, 174, 210, 216, 222, 268, 297, 318, 336, 346, 430, 466, 517, 546, 604, ...
EXAMPLE
The first 8 factorial base Niven numbers are 1, 2, 4, 6, 8, 9, 12 and 16. The gaps between them are 1, 2, 2, 2, 1, 3 and 4. The record gaps, 1, 2, 3 and 4, occur after the terms 1, 2, 9 and 12.
MATHEMATICA
fivenQ[n_] := Module[{s = 0, i = 2, k = n}, While[k > 0, k = Floor[n/i!]; s = s + (i - 1)*k; i++]; Divisible[n, n - s]]; gapmax = 0; n1 = 1; s = {}; Do[If[fivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, 10^5}]; s (* after Jean-François Alcover at A034968 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Sep 03 2021
STATUS
approved