login
A347088
a(n) = A055155(n) - d(n), where A055155(n) = Sum_{d|n} gcd(d, n/d) and d(n) gives the number of divisors of n.
2
0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 5, 0, 4, 0, 2, 0, 0, 0, 4, 4, 0, 4, 2, 0, 0, 0, 8, 0, 0, 0, 11, 0, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 10, 6, 8, 0, 2, 0, 8, 0, 4, 0, 0, 0, 4, 0, 0, 4, 15, 0, 0, 0, 2, 0, 0, 0, 18, 0, 0, 8, 2, 0, 0, 0, 10, 12, 0, 0, 4, 0, 0, 0, 4, 0, 8, 0, 2, 0, 0, 0, 16, 0, 12, 4, 19, 0, 0, 0, 4, 0
OFFSET
1,8
LINKS
FORMULA
a(n) = A055155(n) - A000005(n).
PROG
(PARI)
A055155(n) = sumdiv(n, d, gcd(d, n/d)); \\ From A055155
A347088(n) = (A055155(n)-numdiv(n));
(Python)
from sympy import gcd, divisors, divisor_count
def A347088(n): return sum(gcd(d, n//d) for d in divisors(n, generator=True)) - divisor_count(n) # Chai Wah Wu, Aug 19 2021
CROSSREFS
Cf. A000005, A005117 (positions of zeros), A055155, A347089.
Sequence in context: A245254 A059080 A062070 * A343991 A239395 A182004
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 17 2021
STATUS
approved