login
A346410
a(n) = (n!)^2 * Sum_{k=0..n-1} 1 / ((n-k) * k!)^2.
1
0, 1, 5, 22, 152, 2001, 45097, 1527506, 71864928, 4466430513, 353828600029, 34770661312190, 4148422395161464, 590479899466175681, 98824492409739430401, 19209838771051338898234, 4291488438323868507946880, 1091819942877526843993466529, 313819508664449992611846900981
OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = polylog(2,x) * BesselI(0,2*sqrt(x)).
MATHEMATICA
Table[(n!)^2 Sum[1/((n - k) k!)^2, {k, 0, n - 1}], {n, 0, 18}]
nmax = 18; CoefficientList[Series[PolyLog[2, x] BesselI[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 15 2021
STATUS
approved