login
A066998
a(0)=0; a(n) = n^2*a(n-1) + 1.
6
0, 1, 5, 46, 737, 18426, 663337, 32503514, 2080224897, 168498216658, 16849821665801, 2038828421561922, 293591292704916769, 49616928467130933962, 9724917979557663056553, 2188106545400474187724426
OFFSET
0,3
COMMENTS
if s(n) is a sequence defined as s(0)=x, s(n) = n^2*s(n-1) + k, then s(n) = n!^2*x + a(n)*k. - Gary Detlefs, Feb 20 2010
LINKS
Alexandre Silva, Carlos Pereira dos Santos, João Pedro Neto, and Richard J. Nowakowski, Disjunctive sums of quasi-nimbers, Theor. Comp. Sci. (2022).
FORMULA
a(n) = (n!)^2*Sum_{i=1..n} 1/(i!)^2.
a(n) = floor((1-BesselI(0, 2))*(n!)^2). - Benoit Cloitre, Nov 02 2002
Sum_{n>=0} a(n) * x^n / (n!)^2 = (BesselI(0,2*sqrt(x)) - 1) / (1 - x). - Ilya Gutkovskiy, Jan 23 2021
MATHEMATICA
RecurrenceTable[{a[0]==0, a[n]==n^2 a[n-1]+1}, a, {n, 20}] (* Harvey P. Dale, Jan 24 2019 *)
PROG
(PARI) { for (n=0, 100, if (n==0, a=0, a=n^2*a + 1); write("b066998.txt", n, " ", a) ) } \\ Harry J. Smith, Apr 24 2010
CROSSREFS
This is the same recurrence relation as A006040 except A006040 has a(0) = 1.
Sequence in context: A292408 A339229 A295552 * A036246 A183240 A299715
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 27 2002
EXTENSIONS
Better description from James D. Klein, Feb 25 2002
STATUS
approved