login
A346089
a(n) = n divided by the smallest divisor d of n for which A002034(d) = A002034(n), where A002034(n) is the smallest positive integer k such that k! is a multiple of n.
3
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 6, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 4, 1, 2, 3, 8, 1, 6, 1, 4, 5, 2, 1, 3, 1, 2, 3, 4, 1, 2, 5, 8, 3, 2, 1, 12, 1, 2, 9, 2, 5, 6, 1, 4, 3, 10, 1, 8, 1, 2, 3, 4, 7, 6, 1, 5, 3, 2, 1, 12, 5, 2, 3, 8, 1, 10, 7, 4, 3, 2, 5, 3, 1, 2, 9, 4, 1, 6, 1, 8, 15
OFFSET
1,6
FORMULA
a(n) = n / A346088(n).
PROG
(PARI)
A002034(n) = if(1==n, n, my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
A346089(n) = { my(x=A002034(n)); fordiv(n, d, if(A002034(d)==x, return(n/d))); };
CROSSREFS
Cf. A002034, A345935, A345936, A345944 (positions of 1's), A346088.
Cf. also A344759.
Differs from A302776 for the first time at n=27, where a(27) = 1, while A302776(27) = 3.
Sequence in context: A033103 A245661 A302789 * A302776 A366510 A366522
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 05 2021
STATUS
approved