login
A344891
Divide the primes into subsets of lengths given by successive primes, then reverse the order of terms in each subset.
2
3, 2, 11, 7, 5, 29, 23, 19, 17, 13, 59, 53, 47, 43, 41, 37, 31, 107, 103, 101, 97, 89, 83, 79, 73, 71, 67, 61, 179, 173, 167, 163, 157, 151, 149, 139, 137, 131, 127, 113, 109, 271, 269, 263, 257, 251, 241, 239, 233, 229, 227, 223, 211, 199, 197, 193, 191, 181
OFFSET
1,1
COMMENTS
Irregular triangle read by rows in which row n lists the next p primes in decreasing order, where p is the n-th prime, with n >= 1.
LINKS
EXAMPLE
Written as an irregular triangle in which row lengths give A000040 the sequence begins:
3, 2;
11, 7, 5;
29, 23, 19, 17, 13;
59, 53, 47, 43, 41, 37, 31;
107, 103, 101, 97, 89, 83, 79, 73, 71, 67, 61;
179, 173, 167, 163, 157, 151, 149, 139, 137, 131, 127, 113, 109;
...
MATHEMATICA
Module[{nn=10, p}, p=Total[Prime[Range[nn]]]; Flatten[Reverse/@TakeList[ Prime[ Range[ p]], Prime[Range[nn]]]]] (* Harvey P. Dale, Sep 14 2022 *)
CROSSREFS
Right border gives A180302.
Row lengths give A000040.
Row products give A119645.
Row sums give A034958.
Cf. A343809.
Sequence in context: A072656 A330313 A191669 * A163841 A276589 A275950
KEYWORD
nonn,tabf
AUTHOR
Paolo Xausa, Jun 01 2021
STATUS
approved