login
A163841
Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial transform. Same as interpolating bilateral Schroeder paths (A026375) with the central binomial coefficients (A000984).
4
1, 3, 2, 11, 8, 6, 45, 34, 26, 20, 195, 150, 116, 90, 70, 873, 678, 528, 412, 322, 252, 3989, 3116, 2438, 1910, 1498, 1176, 924, 18483, 14494, 11378, 8940, 7030, 5532, 4356, 3432, 86515, 68032, 53538
OFFSET
0,2
COMMENTS
For n >= 0, k >= 0 let T(n,k) = sum{i=k..n} binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040). Triangle read by rows.
LINKS
Peter Luschny, Swinging Factorial.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
EXAMPLE
Triangle begins
1;
3, 2;
11, 8, 6;
45, 34, 26, 20;
195, 150, 116, 90, 70;
873, 678, 528, 412, 322, 252;
3989, 3116, 2438, 1910, 1498, 1176, 924;
MAPLE
Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
a := n -> SumTria(k->swing(2*k), n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 06 2009
STATUS
approved