The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A344507 a(n) = [x^n] 2/(3*x + sqrt((1 - 3*x)*(x + 1)) + 1). 2
 1, -1, 2, -2, 5, -3, 15, 3, 59, 73, 308, 632, 1951, 4829, 13674, 36306, 100827, 275493, 765150, 2120466, 5918943, 16547595, 46452387, 130703031, 368825661, 1043125407, 2957013140, 8399389528, 23904802109, 68154435941, 194639738503, 556733127851, 1594781146419 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) = [x^n] reverse((x - 2*x^2) / (3*x^2 - 3*x + 1)) / x. a(n) = Sum_{k=0..n}(-2)^k*binomial(n, k)*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4). a(n) = (9*(n - 2)*a(n - 3) + (12*n - 15)*a(n - 2) + (n - 5)*a(n - 1))/(2*n + 2) for n >= 3. MAPLE gf := 2/(3*x + sqrt((1 - 3*x)*(x + 1)) + 1): ser := series(gf, x, 27): seq(coeff(ser, x, n), n = 0..25); # Or: rgf := (x - 2*x^2) / (3*x^2 - 3*x + 1): subsop(1 = NULL, gfun:-seriestolist(series(rgf, x, 32), 'revogf')); MATHEMATICA a[n_] := Sum[(-2)^k Binomial[n, k] Hypergeometric2F1[(k - n)/2, (k - n + 1)/2, k + 2, 4], {k, 0, n}]; Table[a[n], {n, 0, 32}] (* Or: *) rgf := (x - 2 x^2) / (3 x^2 - 3 x + 1); CoefficientList[InverseSeries[Series[rgf, {x, 0, 32}]] / x, x] PROG (SageMath) R. = PowerSeriesRing(QQ, default_prec=32) f = (x - 2*x^2) / (3*x^2 - 3*x + 1) f.reverse().shift(-1).list() CROSSREFS Cf. A005043, A001006, A005773, A059738, A344506, A330799. Sequence in context: A190170 A147524 A113177 * A322786 A184243 A356891 Adjacent sequences: A344504 A344505 A344506 * A344508 A344509 A344510 KEYWORD sign AUTHOR Peter Luschny, May 23 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 13:46 EST 2022. Contains 358700 sequences. (Running on oeis4.)