login
A344316
Number of primes appearing along the border of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.
5
0, 2, 3, 4, 5, 7, 7, 8, 8, 10, 9, 13, 12, 13, 12, 12, 13, 20, 14, 17, 17, 19, 16, 22, 18, 22, 19, 23, 19, 31, 18, 26, 24, 26, 25, 31, 18, 27, 28, 30, 22, 39, 25, 30, 31, 37, 26, 41, 29, 37, 32, 42, 28, 44, 31, 39, 30, 41, 32, 51, 33, 39, 40, 41, 36, 52, 35, 44, 39, 50, 39, 52, 39
OFFSET
1,2
FORMULA
a(n) = pi(n) + pi(n^2-1) - pi(n^2-n) + Sum_{k=1..n-2} (pi(n*k+1) - pi(n*k)).
EXAMPLE
[1 2 3 4 5]
[1 2 3 4] [6 7 8 9 10]
[1 2 3] [5 6 7 8] [11 12 13 14 15]
[1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20]
[1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25]
------------------------------------------------------------------------
n 1 2 3 4 5
------------------------------------------------------------------------
a(n) 0 2 3 4 5
------------------------------------------------------------------------
primes {} {2,3} {2,3,7} {2,3,5,13} {2,3,5,11,23}
------------------------------------------------------------------------
MATHEMATICA
Table[PrimePi[n] + PrimePi[n^2 - 1] - PrimePi[n*(n - 1)] + Sum[PrimePi[n*k + 1] - PrimePi[n*k], {k, n - 2}], {n, 100}]
CROSSREFS
Sequence in context: A336349 A255545 A034152 * A373397 A343271 A363897
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 14 2021
STATUS
approved