login
A343723
a(n) is 1/4 of the number of starting residues r modulo n from which repeated iterations of the mapping r -> r^2 mod n never reach a fixed point.
0
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 0, 0, 0, 2, 4, 0, 3, 4, 5, 0, 4, 4, 4, 4, 6, 0, 7, 0, 6, 0, 5, 4, 8, 8, 6, 0, 8, 6, 10, 8, 5, 10, 11, 0, 10, 8, 0, 8, 12, 8, 10, 8, 12, 12, 14, 0, 14, 14, 12, 0, 10, 12, 16, 0, 15, 10, 17, 8, 16, 16, 12, 16, 17, 12, 19
OFFSET
1,11
FORMULA
a(n) = A343722(n)/4.
PROG
(PARI) pos(list, r) = forstep (k=#list, 1, -1, if (list[k] == r, return (#list - k + 1)); );
isok(r, n) = {my(list = List()); listput(list, r); for (k=1, oo, r = lift(Mod(r, n)^2); my(i = pos(list, r)); if (i==1, return (1)); if (i>1, return(0)); listput(list, r); ); }
a(n) = sum(r=0, n-1, 1 - isok(r, n))/4; \\ Michel Marcus, May 02 2021
CROSSREFS
Cf. A343722.
Sequence in context: A375108 A373924 A028928 * A260149 A091379 A151758
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, May 02 2021
STATUS
approved