login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343698
a(n) is the number of preference profiles in the stable marriage problem with n men and n women such that there are n pairs of soulmates (people who rank each other first).
8
1, 2, 384, 40310784, 7608405715845120, 6419592322744320000000000000, 50709051409862934701619019776000000000000000, 6988904507653043786857875068352862005134308147200000000000000000
OFFSET
1,2
COMMENTS
For such profiles, each person has exactly one valid partner: their soulmate. Consequently, there is only one stable matching: where the soulmates are married to each other.
For these profiles, the Gale-Shapley algorithm, whether it is men-proposing or women proposing, ends in one round.
This is a subsequence of A001013.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..23
Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
FORMULA
a(n) = (n - 1)!^(2n) * n!.
EXAMPLE
For n = 3, there are 3! = 6 ways to pair the men and women into soulmate pairs, then 2! ways to finish each person's preference profile, making 6 * 2!^6 = 384 ways to set up the preference profiles.
MATHEMATICA
Table[(n - 1)!^(2 n) n!, {n, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Tanya Khovanova and MIT PRIMES STEP Senior group, May 26 2021
STATUS
approved