login
A343050
Zuckerman numbers (A007602) ordered by increasing value of k/A007954(k) where A007954(k) is the product of the decimal digits of k.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 15, 24, 384, 175, 12, 735, 128, 672, 135, 144, 1575, 11, 1296, 139968, 624, 3276, 1886976, 224, 816, 216, 432, 34992, 1197, 12768, 315, 132, 3168, 115, 6624, 8832, 2916, 1176, 1344, 3915, 739935
OFFSET
1,2
COMMENTS
a(n) is the Zuckerman number corresponding to A343036(n).
EXAMPLE
As a table, sequence begins:
1 [1, 2, 3, 4, 5, 6, 7, 8, 9]
2 [36]
3 [15, 24]
4 [384]
5 [175]
6 [12]
7 [735]
8 [128, 672]
9 [135, 144, 1575]
10 []
11 [11]
12 [1296, 139968]
13 [624, 3276, 1886976]
14 [224]
15 []
16 []
17 [816]
18 [216, 432, 34992]
19 [1197, 12768]
20 []
21 [315]
22 [132, 3168]
23 [115, 6624, 8832]
24 []
25 []
26 []
27 [2916]
28 [1176, 1344]
29 [3915, 739935]
30 []
... where the 1st column is A056770 and the number of terms per rows is A339757.
CROSSREFS
Cf. A007954 (product of decimal digits), A007602 (Zuckerman numbers), A056770.
Cf. A288069 (Zuckerman quotients), A342593 (Zuckerman non-quotients), A343036.
Cf. A339757.
Sequence in context: A254958 A302502 A257830 * A276143 A064154 A316147
KEYWORD
nonn,base,more
AUTHOR
Michel Marcus, Apr 03 2021
EXTENSIONS
a(29)-a(45) from David A. Corneth, Apr 03 2021
STATUS
approved