login
A254958
Zeroless numbers n with digits d_1, d_2, ... d_k such that d_1^2 + ... + d_k^2 is a square.
3
1, 2, 3, 4, 5, 6, 7, 8, 9, 34, 43, 68, 86, 122, 148, 184, 212, 221, 236, 244, 263, 269, 296, 326, 362, 366, 418, 424, 442, 447, 474, 481, 488, 623, 629, 632, 636, 663, 667, 676, 692, 744, 766, 814, 841, 848, 884, 926, 962, 1111, 1135, 1153, 1177, 1224, 1242, 1315, 1339, 1351, 1393, 1422, 1444, 1513, 1531, 1557
OFFSET
1,2
COMMENTS
Any one of these terms can have an arbitrary number of 0's in between any two digits. Thus, the numbers with 0's have been omitted as trivial.
LINKS
MATHEMATICA
Select[Range[1557], (d = IntegerDigits[#]; Min[d] > 0 && IntegerQ@ Sqrt@ Total[d^2]) &] (* Giovanni Resta, Aug 14 2017 *)
PROG
(PARI) for(n=1, 2000, d=digits(n); if(vecsort(d, , 8)[1], s=0; for(i=1, #d, s+=d[i]^2); if(issquare(s), print1(n, ", "))))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Feb 11 2015
STATUS
approved