login
A342232
a(1) = 2, a(n) = smallest palindromic nontrivial multiple of a(n-1) containing all decimal digits of a(n-1).
1
2, 22, 242, 24442, 4204024, 42044444024, 4204486446844024, 420448648888888846844024, 42049644864886388888368846844694024
OFFSET
1,1
COMMENTS
Differs from A082777 at a(5). a(n) <= (10^A055642(a(n-1))+1)*a(n-1). If a(n-1) > 10 and the last digit of a(n-1) <= 4, then a(n) <= (10^(A055642(a(n-1))-1)+1)*a(n-1).
EXAMPLE
a(5) = 4204024 is a palindromic multiple of a(4) = 24442 and contains two '2' and three '4', all the digits of a(4).
CROSSREFS
Sequence in context: A322283 A151617 A334603 * A082777 A229465 A072076
KEYWORD
nonn,base,more
AUTHOR
Chai Wah Wu, Mar 08 2021
EXTENSIONS
a(9) from Martin Ehrenstein, Mar 10 2021
STATUS
approved