login
A322283
Number of permutations of [n] in which the length of every increasing run is 0 or 1 (mod 10).
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 22, 242, 2002, 13442, 77506, 397826, 1862146, 8085506, 32978946, 127758774, 482490294, 2015041314, 13111486674, 144226353414, 1835958708870, 22030803357420, 240151251989220, 2389590181956120, 21944411982069720, 187919216043135720
OFFSET
0,11
LINKS
David Galvin, John Engbers, and Clifford Smyth, Reciprocals of thinned exponential series, arXiv:2303.14057 [math.CO], 2023.
Ira M. Gessel, Reciprocals of exponential polynomials and permutation enumeration, arXiv:1807.09290 [math.CO], 2018.
FORMULA
E.g.f.: 1/(1 - x + x^2/2! - x^3/3! + x^4/4! - x^5/5! + x^6/6! - x^7/7! + x^8/8! - x^9/9!).
MATHEMATICA
m = 31; CoefficientList[1/Normal[Exp[-x]+O[x]^10]+O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Feb 24 2019 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(1/sum(k=0, 9, (-x)^k/k!)))
CROSSREFS
Cf. A000142, A322251 (mod 3), A317111 (mod 4), A322276 (mod 5), A322262 (mod 6), A322297 (mod 7), A322282 (mod 8), A322298 (mod 9).
Sequence in context: A086855 A089182 A138140 * A151617 A334603 A342232
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 02 2018
STATUS
approved