login
A341441
Total number of triangles visible in a regular (2n+1)-gon with all diagonals drawn.
0
1, 35, 287, 1302, 4257, 11297, 25935, 53516, 101745, 181279, 306383, 495650, 772785, 1167453, 1716191, 2463384, 3462305, 4776219, 6479551, 8659118, 11415425, 14864025, 19136943, 24384164, 30775185, 38500631, 47773935, 58833082, 71942417, 87394517, 105512127
OFFSET
1,2
COMMENTS
For n=1, an equilateral triangle, there is no diagonal, and thus the polygon itself is the only triangle.
FORMULA
a(n) = n*(2*n+1)*(2*n-1)*(2*n^3+21*n^2-2*n+9)/90.
G.f.: x*(x^5+20*x^4+7*x^3-63*x^2-28*x-1)/(x-1)^7. - Alois P. Heinz, Feb 11 2021
E.g.f.: exp(x)*x*(90 + 1485*x + 2775*x^2 + 1350*x^3 + 204*x^4 + 8*x^5)/90. - Stefano Spezia, Feb 12 2021
CROSSREFS
Bisection (odd part) of A005732 and of A006600.
Sequence in context: A219575 A219711 A055658 * A125773 A198397 A071697
KEYWORD
nonn,easy
AUTHOR
Edward Porcella, Feb 11 2021
STATUS
approved