login
A341230
Primes p such that (p^128 + 1)/2 is prime.
4
113, 499, 2081, 2287, 5807, 6151, 7823, 9203, 9629, 11069, 11497, 13463, 16987, 17891, 18049, 19889, 24091, 26981, 27259, 27953, 28319, 28597, 31219, 35899, 39047, 41381, 41603, 43403, 44839, 45343, 49529, 50753, 50857, 55079, 60793, 62219, 66721, 72679, 76771
OFFSET
1,1
COMMENTS
Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, A341210, A341224, A341229, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, ..., j=2^7=128, respectively.
LINKS
EXAMPLE
(3^128 + 1)/2 = 5895092288869291585760436430706259332839105796137920554548481 = 257*275201*138424618868737*3913786281514524929*153849834853910661121, so 3 is not a term.
(113^128 + 1)/2 = 3111793506...0421698561 (a 263-digit number) is prime, so 113 is a term. Since 113 is the smallest prime p such that (p^128 + 1)/2 is prime, it is a(1) and is also A341211(7).
PROG
(PARI) isok(p) = (p>2) && isprime(p) && ispseudoprime((p^128 + 1)/2); \\ Michel Marcus, Feb 07 2021
CROSSREFS
Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), A341210 (k=4), A341224 (k=5), A341229 (k=6), (this sequence) (k=7).
Cf. A341211 (Smallest prime p such that (p^(2^n) + 1)/2 is prime).
Sequence in context: A142850 A203722 A118506 * A109563 A142024 A300964
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Feb 07 2021
STATUS
approved