login
A340537
Primes that are sums of a sequence of consecutive terms of A006094.
1
127, 491, 1201, 1427, 2003, 2713, 2767, 5431, 7229, 7639, 13001, 17231, 18061, 20753, 24509, 37337, 37589, 38149, 38261, 44563, 44839, 50969, 51517, 53609, 55201, 60859, 76519, 77191, 80239, 80783, 81703, 90823, 91583, 96493, 103079, 103687, 110573, 126713, 130411, 134093, 137777, 139199, 139663
OFFSET
1,1
COMMENTS
Each term is the sum of at least three consecutive terms of A006094.
A number that can be expressed as such a sum in more than one way is only listed once. The first such number is 50911291 = 547*557+...+1051*1061 = 1423*1427+...+1559*1567.
LINKS
EXAMPLE
a(1) = 5*7+7*11+11*13 = 127.
a(2) = 5*7+7*11+11*13+13*17+17*19 = 491.
a(3) = 11*13+13*17+17*19+19*23+23*29 = 1201.
a(4) = 19*23+23*29+29*31 = 1427.
MAPLE
SP:= [seq(ithprime(i)*ithprime(i+1), i=1..100)]:
SSP:= ListTools:-PartialSums([0, op(SP)]):
select(t -> t <= SP[-1] and isprime(t),
{seq(seq(SSP[j]-SSP[i], i=1..j-3), j=4..nops(SSP))});
CROSSREFS
Cf. A006094, A340465. Includes A287653.
Sequence in context: A129537 A057814 A038646 * A245867 A096523 A299132
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 10 2021
STATUS
approved