login
A338876
Array T(n, m) read by ascending antidiagonals: denominators of shifted Fubini numbers F(n, m) where m >= 0.
3
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 1, 36, 24, 1, 1, 30, 180, 1440, 120, 1, 1, 3, 1080, 11520, 2400, 720, 1, 1, 42, 9072, 2419200, 2016000, 1814400, 5040, 1, 1, 1, 90720, 11612160, 60480000, 435456000, 12700800, 40320, 1, 1, 90, 7776, 33177600, 69120000, 548674560000, 21337344000, 812851200, 362880, 1
OFFSET
0,5
LINKS
Takao Komatsu, Shifted Bernoulli numbers and shifted Fubini numbers, Linear and Nonlinear Analysis, Volume 6, Number 2, 2020, 245-263.
FORMULA
T(n, m) = denominator(F(n, m)).
F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).
F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).
F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).
F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).
F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).
F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).
(-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).
EXAMPLE
Array T(n, m):
n\m| 0 1 2 3 ...
---+--------------------------------
0 | 1 1 1 1 ...
1 | 1 2 6 24 ...
2 | 1 6 36 1440 ...
3 | 1 1 180 11520 ...
...
Related table of shifted Fubini numbers F(n, m):
1 1 1 1 ...
1 1/2 1/6 1/24 ...
3 5/6 5/36 29/1440 ...
13 2 29/180 149/11520 ...
...
MATHEMATICA
F[n_, m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!, {k, 0, m}]), {x, 0, n}], x, n]; Table[Denominator[F[n-m, m]], {n, 0, 9}, {m, 0, n}]//Flatten
PROG
(PARI) tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
T(n, m) = denominator(n!*matdet(tm(n, m))); \\ Michel Marcus, Dec 31 2020
CROSSREFS
Cf. A000012 (n = 0 or m = 0), A000142, A000670, A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.
Cf. A338875 (numerators).
Sequence in context: A140956 A166919 A338874 * A260238 A283795 A168641
KEYWORD
nonn,frac,tabl
AUTHOR
Stefano Spezia, Dec 25 2020
STATUS
approved