login
A166919
Irregular triangle of coefficients of Product_{j=1..n} (x^j - x - 1), read by rows.
1
1, -1, 2, 1, -1, -6, -5, 2, 3, 1, -1, 24, 26, -3, -14, -13, -2, 3, 3, 1, -1, -120, -154, -11, 73, 79, 47, 13, -21, -22, -9, -1, 3, 3, 1, -1, 720, 1044, 220, -427, -547, -361, -245, -41, 142, 149, 94, 30, -8, -30, -17, -8, -1, 3, 3, 1, -1
OFFSET
0,3
FORMULA
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = Product_{j=1..n} (-j - x + x^j).
T(n, 0) = (-1)^n * n!.
T(n, binomial(n+1,2) - 1) = -1. - G. C. Greubel, Mar 27 2022
EXAMPLE
Irregular triangle begins as:
1;
-1;
2, 1, -1;
-6, -5, 2, 3, 1, -1;
24, 26, -3, -14, -13, -2, 3, 3, 1, -1;
-120, -154, -11, 73, 79, 47, 13, -21, -22, -9, -1, 3, 3, 1, -1;
MATHEMATICA
(* First program *)
p[n_, x_]:= p[n, x]= Product[-k-x +x^k, {k, n}];
Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten
(* Second program *)
m:=11;
T[n_, k_]:= T[n, k]= Coefficient[Series[Product[-j-x +x^j, {j, n}], {x, 0, Binomial[m+1, 2]}], x, k];
Join[{1}, Table[T[n, k], {n, m}, {k, 0, Binomial[n+1, 2] -1}]//Flatten] (* G. C. Greubel, Mar 27 2022 *)
PROG
(Sage)
def p(n, x): return product(x^j -x-j for j in (1..n))
def A166919(n, k): return ( p(n, x) ).series(x, binomial(n+1, 2)).list()[k]
[1]+flatten([[A166919(n, k) for k in (0..binomial(n+1, 2)-1)] for n in (1..10)]) # G. C. Greubel, Mar 27 2022
CROSSREFS
Sequence in context: A330490 A199063 A140956 * A338874 A338876 A260238
KEYWORD
sign,tabf
AUTHOR
Roger L. Bagula, Oct 23 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 27 2022
STATUS
approved