OFFSET
1,1
COMMENTS
To avoid having to consider divisors with leading zeros, we require that the first two digits of k be distinct.
There is no 10-digit pandigital with this property. The closest 9-digit one is 349186750.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..300
EXAMPLE
The number k = 349186750 mentioned in the Comments section produces the successive absolute differences:
|3 - 4| = 1
|4 - 9| = 5
|9 - 1| = 8
|1 - 8| = 7
|8 - 6| = 2
|6 - 7| = 1
|7 - 5| = 2
|5 - 0| = 5
... and the integer 15872125 (visible in the right column) is indeed a divisor of k (349186750/15872125 = 22).
MATHEMATICA
cadQ[n_]:=Module[{idn=Abs[Differences[IntegerDigits[n]]]}, idn[[1]]!=0 && Divisible[n, FromDigits[idn]]]; Select[Range[10, 800], cadQ]//Quiet (* Harvey P. Dale, Jan 02 2022 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Eric Angelini and Jean-Marc Falcoz, Nov 13 2020
EXTENSIONS
Definition clarified by N. J. A. Sloane, Jan 02 2022 at the suggestion of Harvey P. Dale.
STATUS
approved