login
A338641
Positive integers k having no duplicated digit such that concatenating all successive absolute differences between two successive digits of k produces a divisor of k.
2
10, 20, 30, 40, 50, 60, 70, 80, 90, 12, 21, 23, 32, 24, 42, 34, 43, 36, 63, 45, 54, 46, 64, 48, 84, 56, 65, 67, 76, 68, 86, 69, 96, 78, 87, 89, 98, 120, 105, 108, 240, 350, 360, 405, 450, 480, 560, 750, 126, 162, 612, 128, 324, 325, 923, 728, 564, 648, 748, 784, 756, 589, 768, 798, 1240, 1350, 2480, 3450, 4309, 6450, 6750, 7560, 8750, 9805, 7680, 1623, 4512, 2196, 9821, 4318, 3429, 4329, 6528, 9728, 4356, 6534, 5687, 7865, 12480, 21078, 34086, 46750, 96450, 56129, 76328, 67984, 451608, 538209, 965402, 954086, 428176, 691578, 873642, 3574192, 41509836, 98016534, 83574192, 349186750
OFFSET
1,1
COMMENTS
There are only 108 integers with this property: they are all listed above.
EXAMPLE
The last integer of the list 349186750 produces the successive absolute differences:
|3 - 4| = 1
|4 - 9| = 5
|9 - 1| = 8
|1 - 8| = 7
|8 - 6| = 2
|6 - 7| = 1
|7 - 5| = 2
|5 - 0| = 5
... and the integer 15872125 (visible in the right column) is indeed a divisor of the starting number (349186750/15872125 = 22).
CROSSREFS
Cf. A338855 and A338640 (variants on the same idea).
Sequence in context: A037997 A044850 A282150 * A337857 A044895 A370400
KEYWORD
base,nonn
AUTHOR
STATUS
approved