OFFSET
1,3
COMMENTS
For a(6) = 6, Lucas(6) = 18 and 18/digsum(18) = 2 is a prime number, so Lucas(6) is a Moran number (A001101).
For a(9) = 56, Lucas(56) = 505019158607 and 505019158607/digsum(505019158607) = 10745088481 is a prime number, so Lucas(56) is a Moran number.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..57
EXAMPLE
MATHEMATICA
nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; Select[Range[6000], nivenQ[LucasL[#]] &] (* Amiram Eldar, Sep 15 2020 *)
PROG
(Magma) niven:=func<n|n mod &+Intseq(n) eq 0>; [k:k in [0..70000]|niven(Lucas(k))];
(PARI) isok(k) = my(l=real((2+quadgen(5))*quadgen(5)^k)); (l % sumdigits(l)) == 0; \\ Michel Marcus, Sep 15 2020
(Python)
A337449_list, k, p, q = [], 0, 2, 1
while k < 10**6:
if p % sum(int(d) for d in str(p)) == 0:
A337449_list.append(k)
k += 1
p, q = q, p+q # Chai Wah Wu, Sep 17 2020
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Sep 14 2020
STATUS
approved