login
A336977
Expansion of Product_{k>=1} (1 - x^k * (k + x)).
5
1, -1, -3, -2, 1, 9, 11, 15, 6, -18, -46, -54, -115, -101, 32, 82, 182, 455, 804, 915, 434, -114, 196, -974, -3507, -6913, -7555, -5081, -4480, -7463, -4861, 7677, 25779, 56080, 76015, 51021, 53996, 104670, 114132, 93920, -33843, -233380, -491936, -658774, -597698, -601576
OFFSET
0,3
LINKS
FORMULA
G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} (k/d + x)^d / d).
MATHEMATICA
m = 45; CoefficientList[Series[Product[1 - x^k*(k + x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 01 2021 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k*(k+x)))
(PARI) N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, (k/d+x)^d/d))))
CROSSREFS
Convolution inverse of A336975.
Sequence in context: A119421 A121581 A162976 * A106338 A282628 A262554
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 09 2020
STATUS
approved