This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162976 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k double descents and initial descents (n>=0; 0<=k<=max(0,n-1)) [we say that i is a doubledescent of a permutation p if p(i) > p(i+1) > p(i+2); we say that a permutation p has an initial descent if p(1) > p(2)]. 3
 1, 1, 1, 1, 3, 2, 1, 9, 11, 3, 1, 39, 48, 28, 4, 1, 189, 297, 166, 62, 5, 1, 1107, 1902, 1419, 476, 129, 6, 1, 7281, 14391, 11637, 5507, 1235, 261, 7, 1, 54351, 118044, 111438, 56400, 19096, 3020, 522, 8, 1, 448821, 1078245, 1119312, 673128, 239146, 61986 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Sum of entries in row n is n! = A000142(n). T(n,0) = A080635(n). REFERENCES I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983 (p. 195). LINKS Alois P. Heinz, Rows n = 0..141, flattened Yan Zhuang, Monoid networks and counting permutations by runs, arXiv preprint, 2015. FORMULA E.g.f.: G(t,z) = [exp(bz)-exp(az)]/[b*exp(az)-a*exp(bz)], where a+b=1+t and ab=1. EXAMPLE T(4,2) = 3 because each of the permutations 4312, 4213, and 3214 has one doubledescent and one initial descent. Triangle starts: :   1; :   1; :   1,   1; :   3,   2,   1; :   9,  11,   3,  1; :  39,  48,  28,  4, 1; : 189, 297, 166, 62, 5, 1; MAPLE eq := s^2-(t+1)*s+1 = 0: sol := solve(eq, s): a := sol[1]: b := sol[2]: G := (exp(b*z)-exp(a*z))/(b*exp(a*z)-a*exp(b*z)): Gser := simplify(series(G, z = 0, 15)): P[0]:=1: for n to 11 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 11 do seq(coeff(P[n], t, j), j = 0 .. max(0, n-1)) end do; # second Maple program: b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(       add(b(u-j, o+j-1, 1), j=1..u)+       add(b(u+j-1, o-j, 2)*`if`(t=2, x, 1), j=1..o)))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n, 1)): seq(T(n), n=0..15);  # Alois P. Heinz, Dec 09 2016 MATHEMATICA b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Expand[Sum[b[u-j, o+j-1, 1], {j, 1, u}] + Sum[b[u + j - 1, o - j, 2]*If[t == 2, x, 1], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}] ][b[0, n, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *) CROSSREFS Cf. A000142, A080635, A162975. Sequence in context: A108916 A119421 A121581 * A106338 A282628 A262554 Adjacent sequences:  A162973 A162974 A162975 * A162977 A162978 A162979 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Jul 26 2009 EXTENSIONS One term for row n=0 prepended by Alois P. Heinz, Dec 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 22:51 EST 2019. Contains 319251 sequences. (Running on oeis4.)