OFFSET
1,2
COMMENTS
The corresponding quotients, k/A034690(k), are 1, 1, 2, 6, 5, 8, 6, 9, 61, ...
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
EXAMPLE
15 is a term since its divisors are {1, 3, 5, 15}, and their sum of sums of digits is 1 + 3 + 5 + (1 + 5) = 15 which is a divisor of 15.
MATHEMATICA
divDigSum[n_] := DivisorSum[n, Plus @@ IntegerDigits[#] &]; Select[Range[10^4], Divisible[#, divDigSum[#]] &]
PROG
(PARI) isok(k) = k % sumdiv(k, d, sumdigits(d)) == 0; \\ Michel Marcus, Mar 30 2020
(Python)
from sympy import divisors
def sd(n): return sum(map(int, str(n)))
def ok(n): return n%sum(sd(d) for d in divisors(n)) == 0
def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
print(aupto(8721)) # Michael S. Branicky, Jan 15 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Mar 29 2020
STATUS
approved