login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194454 a(n) = 12*n^2 + 2*n + 1. 4
1, 15, 53, 115, 201, 311, 445, 603, 785, 991, 1221, 1475, 1753, 2055, 2381, 2731, 3105, 3503, 3925, 4371, 4841, 5335, 5853, 6395, 6961, 7551, 8165, 8803, 9465, 10151, 10861, 11595, 12353, 13135, 13941, 14771, 15625, 16503, 17405, 18331, 19281 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A142241 gives the first differences.

Inverse binomial transform of this sequence: 1, 14, 24, 0, 0 (0 continued).

a(n)*a(n-1)-11  is a square, precisely 4*A051866(n)^2.

Sequence found by reading the line from 1, in the direction 1, 15,..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (1+x)*(1+11*x)/(1-x)^3.

a(n) = A154106(-n-1).

a(n) = 2*A049453(n)+1.

EXAMPLE

Using these numbers we can write:

  1, 15, 53, 115, 201, 311, 445,  603,  785,  991, 1221, ...

  0,  0,  1,  15,  53, 115, 201,  311,  445,  603,  785, ...

  0,  0,  0,   0,   1,  15,  53,  115,  201,  311,  445, ...

  0,  0,  0,   0,   0,   0,   1,   15,   53,  115,  201, ...

  0,  0,  0,   0,   0,   0,   0,    0,    1,   15,   53, ...

  0,  0,  0,   0,   0,   0,   0,    0,    0,    0,    1, ...

  ======================================================

  The sums of the columns give the sequence A172073 (after 0):

  1, 15, 54, 130, 255, 441, 700, 1044, 1485, 2035, 2706, ...

MATHEMATICA

Table[12 n^2 + 2 n + 1, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)

PROG

(MAGMA) [12*n^2+2*n+1: n in [0..40]];

(PARI) for(n=0, 40, print1(12*n^2+2*n+1", "));

CROSSREFS

Cf. A154106, A172073, A049453.

Sequence in context: A295339 A193608 A220156 * A219384 A198955 A063436

Adjacent sequences:  A194451 A194452 A194453 * A194455 A194456 A194457

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Aug 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 17:21 EDT 2019. Contains 321330 sequences. (Running on oeis4.)