login
A333314
Composite non-Carmichael numbers k such that rad(phi(k)) divides k-1, where rad(k) is the squarefree kernel of k (A007947) and phi is the Euler totient function (A000010).
1
15, 51, 85, 91, 133, 247, 255, 259, 435, 451, 481, 511, 595, 679, 703, 763, 771, 949, 1111, 1141, 1261, 1285, 1351, 1387, 1417, 1615, 1695, 1843, 1891, 2047, 2071, 2091, 2119, 2431, 2509, 2701, 2761, 2955, 3031, 3097, 3145, 3277, 3367, 3409, 3589, 3655, 3667
OFFSET
1,1
COMMENTS
McNew and Wright proved that this sequence is infinite.
LINKS
Nathan McNew and Thomas Wright, Infinitude of k-Lehmer numbers which are not Carmichael, International Journal of Number Theory, Vol. 12, No. 7 (2016), pp. 1863-1869; preprint, arXiv:1508.05547 [math.NT], 2015.
EXAMPLE
15 = 3 * 5 is a term since it is composite and not a Carmichael number, and rad(phi(15)) = rad(8) = 2 divides 15 - 1 = 14.
MATHEMATICA
rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); Select[Range[4000], Divisible[#-1, rad[EulerPhi[#]]] && !Divisible[#-1, CarmichaelLambda[#]] &]
CROSSREFS
Complement of the primes and Carmichael numbers (union of A000010 and A002997) with respect to A187731.
Complement of A002997 with respect to A238574.
Sequence in context: A127643 A227129 A238574 * A238575 A020144 A339880
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 14 2020
STATUS
approved