OFFSET
1,1
COMMENTS
Composite numbers in A187731.
J. M. Grau and A. M. Oller-Marcén showed that all terms of this sequence are terms of A003277 (cyclic numbers) and this sequence contains all terms of A002997 (Carmichael numbers). - Tomohiro Yamada, Sep 28 2020
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
J. M. Grau and A. M. Oller-Marcén, On k-Lehmer numbers, Integers, 12(2012), #A37.
Max Lewis and Victor Scharaschkin, k-Lehmer and k-Carmichael Numbers, Integers, 16 (2016), #A80.
Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, arXiv:1210.2001 [math.NT], 2012; International Journal of Number Theory 9 (2013), 1215-1224.
Nathan McNew, Multiplicative problems in combinatorial number theory, Thesis, 2015.
Nathan McNew and Thomas Wright, Infinitude of k-Lehmer numbers which are not Carmichael, Int. J. Number Theory V.12(7), pp. 1863-1869, (2016).
Giovanni Resta, k-Lehmer numbers.
EXAMPLE
2^3*3^2 = 72 = phi(91) divides (91-1)^3 = (2*3^2*5)^3 implies 91 is a 3-Lehmer number.
MATHEMATICA
rad[n_]:=Times@@Transpose[FactorInteger[n]][[1]]; Select[1+Range[1000], !PrimeQ[#]&&Mod[#-1, rad[EulerPhi[#]]]==0&]
PROG
(PARI) is(n)=my(p=eulerphi(n), g=n); if(isprime(n), return(0), n--); while((g=gcd(p, g))>1, p/=g); p==1 && n \\ Charles R Greathouse IV, Mar 03 2014
CROSSREFS
Cf. A187731 (numbers n such that rad(phi(n)) divides n-1).
Cf. A173703 (2-Lehmer numbers; i.e., phi(n) divides (n-1)^2).
Cf. A234936 (smallest composite n-Lehmer number which is not an (n-1)-Lehmer number).
Cf. A207080 (minimum Carmichael number which is not an n-Lehmer number).
Cf. A234958 (number of k-Lehmer numbers up to 10^n).
Cf. A238575 (k-Lehmer numbers with two prime factors).
KEYWORD
nonn
AUTHOR
José María Grau Ribas, Mar 01 2014
STATUS
approved