login
A332432
a(n) = [2^n/(1 - cos(1/n))] - [2^n/(-1 + cot(1/n))], where [ ] = floor.
4
10, 28, 141, 509, 1597, 4606, 12544, 32774, 82965, 204856, 495752, 1179957, 2769577, 6423997, 14748718, 33560981, 75773263, 169897572, 378594174, 838980348, 1849932688, 4060585522, 8876163946, 19329419393, 41947233974, 90739684034, 195706653907, 420941590665
OFFSET
1,1
FORMULA
a(n) = [2^n/(1 - cos(1/n))] - [2^n/(-1 + cot(1/n))], where [ ] = floor.
a(n) = A332430(n) - A332432(n).
MATHEMATICA
z = 50; u = Table[Floor[2^n/(1 - Cos[1/n])], {n, 1, z}] (* A332430 *)
v = Table[Floor[2^n/(-1 + Cot[1/n])], {n, 1, z}] (* A332431 *)
u - v (* A332432 *)
w = Table[Floor[2^n/(1 - Cos[1/n]) - 2^n/(-1 + Cot[1/n])], {n, 1, z}]
u - v - w (* A332479 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 04 2020
STATUS
approved