login
A332091
Decimal expansion of the arithmetic-geometric mean AGM(1, 1, 2) defined as limit of the sequence x(n+1) = P(x(n)) with x(0) = (1, 1, 2) and P(a,b,c) = ((a + b + c)/3, sqrt((ab + ac + bc)/3), (abc)^(1/3)).
1
1, 2, 9, 4, 5, 7, 5, 1, 0, 8, 1, 1, 6, 6, 1, 2, 6, 4, 3, 4, 4, 8, 6, 4, 3, 4, 9, 8, 2, 1, 0, 0, 3, 5, 3, 6, 7, 4, 0, 3, 7, 9, 7, 2, 7, 2, 1, 5, 6, 4, 2, 4, 5, 8, 6, 8, 0, 8, 6, 6, 4, 1, 7, 2, 3, 9, 5, 6, 5, 9, 8, 7, 4, 8, 5, 8, 9, 6, 2, 0, 5, 9, 7, 5, 6, 5, 9, 8, 7, 6, 7, 6, 7, 1, 4, 2, 5, 6, 4, 7, 4
OFFSET
1,2
COMMENTS
See the main entry A332093 for more information on the multi-argument AGM(...) used here. One main motivation for these entries is to find exact formulas for this function which seems not yet well studied in the literature, or at least for particular values like this one, A332092 = AGM(1,2,2) and A332093 = AGM(1,2,3). Any references to possibly existing works using this definition would be welcome.
Other 3-argument generalizations of the AGM have been proposed (cf. A332093) which will give different values for AGM(1,1,2).
LINKS
Vladimir Reshetnikov, Arithmetic-geometric mean of 3 numbers, math.StackExchange.com, May 22 2016.
User Mathlover, To find the limit of three terms mean iteration, math.StackExchange.com, Jul 12 2013.
Wikipedia, Arithmetic-geometric mean, created Jan 2, 2002.
EXAMPLE
1.294575108116612643448643498210035367403797272156424586808664172...
PROG
(PARI) f(k, x, S)={forvec(i=vector(k, i, [1, #x]), S+=vecprod(vecextract(x, i)), 2); S/binomial(#x, k)} \\ normalized k-th elementary symmetric polynomial in x
AGM(x)={until(x[1]<=x[#x], x=[sqrtn(f(k, x), k)|k<-[1..#x]]); vecsum(x)/#x}
default(realprecision, 100); digits(AGM([1, 1, 2])\.1^100)
CROSSREFS
Cf. A332092 (AGM(1,2,2)), A332093 (AGM(1,2,3)).
Cf. other sequences related to the AGM (of two numbers): A061979, A080504, A090852 ff, A127758 ff.
Sequence in context: A222239 A365936 A281384 * A203648 A300889 A275807
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Sep 18 2020
STATUS
approved