login
A330208
Chebyshev pseudoprimes to both base 2 and base 3: composite numbers k such that T(k, 2) == 2 (mod k) and T(k, 3) == 3 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind.
3
5719, 6061, 11395, 15841, 17119, 18721, 31535, 67199, 73555, 84419, 117215, 133399, 133951, 174021, 181259, 194833, 226801, 273239, 362881, 469201, 516559, 522899, 534061, 588455, 665281, 700321, 721801, 778261, 903959, 1162349, 1561439, 1708901, 1755001, 1809697
OFFSET
1,1
COMMENTS
Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k). They noted that there are no Chebyshev pseudoprimes in both bases 2 and 3 below 2000.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..73 (terms below 10^7)
Thøger Bang, Congruence properties of Tchebycheff polynomials, Mathematica Scandinavica, Vol. 2, No. 2 (1955), pp. 327-333, alternative link,
Mohamed O. Rayes, Vilmar Trevisan, and Paul S. Wangy, Chebyshev Polynomials and Primality Tests, ICM Technical Report, Kent State University, Kent, Ohio, 1999. See page 8.
EXAMPLE
5719 is in the sequence since 5719 = 7 * 19 * 43 is composite and both T(5719 , 2) - 2 and T(5719, 3) - 3 are divisible by 5719.
MATHEMATICA
Select[Range[2*10^4], CompositeQ[#] && Divisible[ChebyshevT[#, 2] - 2, #] && Divisible[ChebyshevT[#, 3] - 3, #] &]
CROSSREFS
Intersection of A330206 and A330207.
Sequence in context: A244163 A253423 A202376 * A252422 A183647 A028547
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 05 2019
STATUS
approved