login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329073 a(n) = (1/n)*Sum_{k=0..n-1} (40k+13)*(-1)^k*50^(n-1-k)*T_k(4,1)*T_k(1,-1)^2, where T_k(b,c) denotes the coefficient of x^k in the expansion of (x^2+b*x+c)^k. 4
13, 219, 7858, 221525, 9253710, 375158958, 16882409364, 736344816813, 32964312771550, 1471835619627770, 66910145732699964, 3061043035494001682, 141458526138008430124, 6567714993530314856700, 306628434270114823521000, 14370411994543866356077725, 676259546148988495771751550 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Conjecture 1: (i) a(n) is a positive integer for each n > 0; also, a(n) is odd if and only if n is a power of two. Moreover, we have the identity Sum_{k>=0} ((40k+13)/(-50)^k)*T_k(4,1)*T_k(1,-1)^2 = 55*sqrt(15)/(9*Pi).
(ii) Let p > 5 be a prime. Then Sum_{k=0..p-1} ((40k+13)/(-50)^k)*T_k(4,1)* T_k(1,-1)^2 == (p/3)*(12 + 5*Leg(3/p) + 22*Leg(p/15)) (mod p^2), where Leg(a/p) denotes the Legendre symbol. Also, for the sum S(p) = Sum_{k=0..p-1} T_k(4,1)* T_k(1,-1)^2/(-50)^k, if Leg(-5/p) = -1 then S(p) == 0 (mod p^2); if p == 1,9 (mod 20) and p = x^2 + 5*y^2 with x and y integers then S(p) == 4x^2-2p (mod p^2); if p == 3,7 (mod 20) and 2p = x^2 + 5*y^2 with x and y integers then S(p) == 2x^2-2p (mod p^2).
Conjecture 2: (i) For any n > 0, the number b(n):=(1/n)*Sum_{k=0..n-1} (40k+27)*(-6)^(n-1-k)*T_k(4,1)*T_k(1,-1)^2 is an integer. Moreover, b(n) is odd if and only if n is a power of two.
(ii) Let p > 3 be a prime. Then Sum_{k=0..p-1} ((40k+27)/(-6)^k)*T_k(4,1)* T_k(1,-1)^2 == (p/9)*(55*Leg(-5/p) + 198*Leg(3/p)-10) (mod p^2). Also, for the sum T(p) = Sum_{k=0..p-1} T_k(4,1)*T_k(1,-1)^2/(-6)^k, if Leg(-5/p) = -1 then T(p) == 0 (mod p^2); if p == 1,9 (mod 20) and p = x^2 + 5*y^2 with x and y integers then T(p) == Leg(p/3)*(4x^2-2p) (mod p^2); if p == 3,7 (mod 20) and 2p = x^2 + 5*y^2 with x and y integers then T(p) == Leg(p/3)(2p-2x^2) (mod p^2).
LINKS
Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory: CANT 2011 and 2012, Springer Proc. in Math. & Stat., Vol. 101, Springer, New York, 2014, pp. 257-312. Also available from arXiv:1101.0600 [math.NT], 2011-2014.
EXAMPLE
a(1) = 13 since (40*0+13)*(-1)^0*50^(1-1-0)*T_0(4,1)*T_0(1,-1)^2/1 = 13/1 = 13.
MATHEMATICA
T[b_, c_, 0]=1; T[b_, c_, 1]=b;
T[b_, c_, n_]:=T[b, c, n]=(b(2n-1)T[b, c, n-1]-(b^2-4c)(n-1)T[b, c, n-2])/n;
a[n_]:=a[n]=Sum[(40k+13)(-1)^k*50^(n-1-k)*T[4, 1, k]*T[1, -1, k]^2, {k, 0, n-1}]/n;
Table[a[n], {n, 1, 20}]
CROSSREFS
Sequence in context: A320627 A059525 A086147 * A015253 A051621 A173427
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 03 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 01:26 EDT 2024. Contains 372341 sequences. (Running on oeis4.)