login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329070 Array read by ascending antidiagonals: T(n, k) = (k*n)!/(k^n*(1/k)_n) with (n >= 0 and k >= 1), where (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol. 4
1, 1, 1, 1, 2, 1, 1, 8, 6, 1, 1, 48, 180, 24, 1, 1, 384, 12960, 8064, 120, 1, 1, 3840, 1710720, 10644480, 604800, 720, 1, 1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1, 1, 645120, 109930867200, 244635697152000, 2303884477440000, 70355755008000, 10897286400, 40320, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
For information about the function W_m(z) = 1 + Sum_{n >= 0} (-1)^(n+1)* z^((m+2)*n + 1)/(T(n, m+2)*((m + 2)*n + 1)) (mentioned in the Formula section below), see Theorem 3.2 in Elizalde and Noy (2003) with u = 0 and m and a in the theorem equal to our m + 1. See also the documentation of array A327722.
By using the ratio test and the Stirling approximation to the gamma function, we may show that the radius of convergence of the power series for W_m(z) is infinity (for each m >= 0). Thus, the function W_m(z) (as defined by the above power series) is entire.
If we define S(m,s) = T(n-s, s+1) for m >= 0 and 0 <= s <= m, we get the triangular array that appears in the Example section below.
LINKS
Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125; see Theorem 3.2 (p. 116).
Alison Schuetz and Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
T(0,k) = 1, T(1,k) = k!, and T(2,k) = (2*k)!/(k + 1) for k >= 1.
T(n,1) = 1, T(n,2) = (2*n)!!, and T(n,3) is related to the Airy functions (see the documentation of A176730).
T(n+1,k) = (k-1)! * binomial(k*(n+1), k-1) * T(n,k) for n >= 0 and k >= 1.
T(n+1,k)/(k! * T(n,k)) = Cat(n+1, k), where Cat(d, k) = binomial(k*d, k)/(k * (d - 1) + 1) is a Fuss-Catalan number; see Theorem 1.2 in Schuetz and Whieldon (2014).
If F(k,z) = Sum_{n >= 0} z^(k*n)/T(n,k), then F(k,z) satisfies the o.d.e. F^(k-1)(k,z) - z*F(k,z) = 0.
If W_m(z) = 1 + Sum_{n >= 0} (-1)^(n+1)* z^((m+2)*n + 1)/(T(n, m+2)*((m + 2)*n + 1)), then 1/W_m(z) is the e.g.f. of row m of A327722(m,n), which counts permutations of [n] that avoid the consecutive pattern 12...(m+1)(m+3)(m+2) (or equivalently, the consecutive pattern (m+3)(m+2)...(3)(1)(2)).
The function W_m(z) satisfies the o.d.e. W_m^(m+2)(z) + z*W_m'(z) = 0 with W_m(0) = 1, W_m'(0) = -1, and W_m^(s)(0) = 0 for s = 2..(m + 1).
EXAMPLE
Array T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
1, 1, 1, 1, 1, 1, ...
1, 2, 6, 24, 120, 720, ...
1, 8, 180, 8064, 604800, 68428800, ...
1, 48, 12960, 10644480, 19813248000, 70355755008000, ...
...
Triangular array S(m,s) = T(m-s, s+1) (with rows m >= 0 and columns s >= 0):
1;
1, 1;
1, 2, 1;
1, 8, 6, 1;
1, 48, 180, 24, 1;
1, 384, 12960, 8064, 120, 1;
1, 3840, 1710720, 10644480, 604800, 720, 1;
1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1;
...
MAPLE
A := (n, k) -> `if`(k=0, 1, (GAMMA(1/k)*GAMMA(k*n+1))/(GAMMA(n+1/k)*k^n)):
seq(seq(A(n-k-1, k), k=1..n-1), n=0..10); # Peter Luschny, Nov 04 2019
CROSSREFS
Rows include A000012 (n = 0), A000142 (n = 1), A060593 (n = 2).
Columns include A000012 (k = 1), A000165 (k = 2), A176730 (k = 3).
Ratios T(n+1,k)/(k!*T(n,k)) include A000012 (k = 1), A000027 (k = 2), A000326 (k = 3), A100157 (k = 4), A234043 (k = 5).
Sequence in context: A249141 A353953 A102875 * A157785 A021476 A291084
KEYWORD
nonn,tabl
AUTHOR
Petros Hadjicostas, Nov 03 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 16:40 EDT 2024. Contains 371916 sequences. (Running on oeis4.)